Featured News

A decade after scientists in The Picower Institute for Learning and Memory at MIT first began testing whether sensory stimulation of the brain’s 40Hz “gamma” frequency rhythms could treat Alzheimer’s disease in mice, a growing evidence base supporting the idea that it can improve brain health — in humans as well as animals — has emerged from the work of labs all over the world. A review article in PLOS Biology describes the state of research so far and presents some of the fundamental and clinical questions at the forefront of the noninvasive gamma stimulation now.
“As we’ve made all our observations, many other people in the field have published results that are very consistent,” says Li-Huei Tsai, Picower professor of neuroscience in the Department of Brain and Cognitive Sciences, director of MIT’s Aging Brain Initiative, and senior author of the review, with postdoc Jung Park. “People have used many different ways to induce gamma including sensory stimulation, transcranial alternating current stimulation, or transcranial magnetic stimulation, but the key is delivering stimulation at 40 hertz. They all see beneficial effects.
Featured News

Within the human brain, a network of regions has evolved to process language. These regions are consistently activated whenever people listen to their native language or any language in which they are proficient. A study by BCS researchers finds that this network also responds to languages that are completely invented, such as Esperanto, which was created in the late 1800s as a way to promote international communication, and even to languages made up for television shows such as “Star Trek” and “Game of Thrones.”
Featured News

The roundworm C. elegans is a simple animal whose nervous system has exactly 302 neurons. Each of the connections between those neurons has been comprehensively mapped, allowing researchers to study how they work together to generate the animal’s different behaviors.
Steven Flavell, an MIT associate professor of brain and cognitive sciences and investigator with the Picower Institute for Learning and Memory at MIT and the Howard Hughes Medical Institute, uses the worm as a model to study motivated behaviors such as feeding and navigation, in hopes of shedding light on the fundamental mechanisms that may also determine how similar behaviors are controlled in other animals.